

H₂ refuelling infrastructure for long-distance road haulage

Tight timeline for the roll-out

Speaker: Dipl.-Ing. Jan Zerhusen (LBST)

17 November 2022

Study to be published by e-mobil BW in Q1/2023

Background

- H₂ road transport is gaining momentum, first small fleets and prototypes are put into operation
- H₂ fuel supply infrastructure is key to successful market ramp-up, but virtually not existing yet
- Study launched to provide an overview of the current state of play regarding refuelling infrastructure

Focus: H₂-Infrastructure for <u>heavy-duty</u> long-distance road haulage

Study topics:

- Hydrogen fuel options for heavy-duty vehicles (HDV)
- Status of refuelling protocols & nozzles
- Refuelling station supply options
- Fuel costs and cost reductions
- Refuelling infrastructure

Study funding & publication

Landesagentur für neue Mobilitätslösungen und Automotive Baden-Württemberg

Study consortium

GHG relevance of HDV & H₂ fuel demand projections

- Germany's ambition: Climate neutral by 2045 (Climate protection law, 2021)
 - Total GHG emissions: 65% (1990 vs. 2030)
 - − Transport sector: 164 Mt_{CO2äq}. № 85 Mt_{CO2äq}. (2019 vs. 2030)
 - HDV account for about 1/5 of those emissions
- Recent studies on Germany's 2045 decarbonization target:
 - H₂ in transport sector mainly for HDV & long-distance
 - Roll-out picks up after 2025

Expected 2030 numbers pose a challenge especially considering:

- The status of the new H₂ fuel options proposed for HDV long-distance applications
- The status and capacity of corresponding refuelling infrastructure

H₂ fuel demand for road transport in Germany

New Hydrogen fuel options

Current FC truck deployments use 35 MPa storage technology (available & proven)

Need to decarbo all road transp	onize port	Application	specific	35 MPa technology offers:	V	Technology & ehicle specific	Space of hydrog	on truck for en storage	
All vehicle typesAll applicationsDaily/anFuel cor		Daily/annuaFuel consur	Al mileage Mathematical Cap.: ~ 30 – 40 I Participal Range: ~ 400 kn		Installation spaceEnergy density		LimitedLimited	Limited by regulationsLimited by economics	
	"Ne	w" H ₂ fuel op	tions with	increased energy densi	ty	Technology status	H ₂ supply to station	Number of tech. suppliers	
Long-distance	Сара	acity: 80 kg ge: 1.000 km e refuelled: to 15 min.		70 MPa gaseous		Most advanced	$LH_2 \text{ or } GH_2$	many	
road haulage	Rang To be			Subcooled liquid (sLH ₂)		Less advanced	LH ₂ only	few	
	in 10			Cryo-compressed (CcH ₂))	Less advanced	LH ₂ (or GH ₂)	few	
17 November 2022				LBST & DLR		LH ₂ : Liquid hydrogen, G	H ₂ : Gaseous hydrogen	LBST.de 4	

Interoperable pan-European refuelling network...

LBST.de

... is a mandatory precondition for successful and rapid uptake of heavy-duty long-distance FC trucks.

Requirements "pan-European"	Status	Current issue
EU-wide refuelling network	pending	AFIR: Diverging ambitions of Council & Parliament
Sufficient & efficient fuel supply (LH ₂)	missing	Limited LH ₂ availability in Europe, high costs & energy demand
Requirements "Interoperable"		
Common H ₂ fuel options used	unclear	Unclear relevance of H ₂ fuel option(s) (35 MPa, 70 MPa, sLH ₂ , CcH ₂)
Standardized nozzles (& receptacle)	pending	Still in pre-normative state (sLH ₂ , CcH ₂)
Standardized refueling protocols	pending	Risk of delays in the (ISO) standardization process (e.g. 70 MPa)

Tight timeline - Need for action

2022	2025	2030	indicative
Technology development, validation & demonstration	Market ramp-up	Mass mar	·ket

Who		What
	Industry & RCS bodies	Timely development & int. standardisation of refuelling protocols & nozzels
	Politics (EU)	Adopt the AFIR with H ₂ infrastructure targets in a timely manner
	Industry (vehicle & Infrastructure)	Take joint decision on future hydrogen fuel options
	Industry (energy & infrastructure)	Prepare for fuel supply technology upscaling & ramp-up (esp. LH ₂)

Thank you for your attention!

Project lead and contact LBST:

Jan Zerhusen Senior Project Manager

Jan.Zerhusen@LBST.de

Contact DLR:

Mathias Böhm Research Associate

Mathias.Boehm@DLR.de

LBST · Ludwig-Bölkow-Systemtechnik GmbH

Daimlerstr. 15 · 85521 München/Ottobrunn · Germany www.lbst.de

